Recent News
López honored as outstanding UW alum for ‘Creating a Healthier and More Just World’
January 29, 2025
Two School of Engineering students receive Tau Beta Pi scholarships
September 6, 2024
Engineering graduate student awarded New Mexico Space Grant Consortium fellowship
September 3, 2024
UNM’s López wins one of six inaugural NSF TRAILBLAZER awards for wildfire project
August 23, 2024
News Archives
Datye recipient of 2019 Burwell Lectureship in Catalysis
March 4, 2019

Professor Abhaya Datye and his research group have performed elegant and creative experiments that have clarified relationships between the atomic-level structure of heterogeneous catalysts and their reactivity and/or stability. He has introduced new approaches to doing catalysis research (e.g., model catalysts and sample preparation techniques) that enabled the use of electron microscopy to study industrially relevant catalysts. He thus elucidated important fundamental concepts that are crucial for designing catalysts for improved performance. He showed how catalytic activity is enhanced due to oxidation-induced roughening of metal surfaces in nanoparticles, and how phase transformations in Fe Fischer-Tropsch catalysts can cause catalyst attrition. A major contribution was the use of electron microscopy and sintering rate equations to uncover atomic-scale mechanisms of catalyst sintering. Recently, his group described a method for generating stable monomeric Pt species on the surfaces of a ceria support, termed atom trapping. In this work, high temperatures, which normally destroy catalysts, enable the synthesis of thermally stable single atom catalysts (SACs). By studying the trapping of mobile atoms on the support, his group has improved our fundamental understanding of catalyst regeneration. These insights have led to many creative ideas for new sinter-resistant catalyst materials that have great industrial relevance.